Meristematic Activity during Adventitious Root Primordium Development: Influences of Endogenous Auxin and Applied Gibberellic Acid.
نویسنده
چکیده
Intact brittle willows (Salix fragilis L.) were treated so that developing adventitious root primordia in the stems would be subjected to elevated gibberellic acid or reduced endogenous auxin levels. Observations were made of primordia that were initiated during the experiments and of primordia that were established before the experiments began. The results indicated that as primordia became older and contained more cells, auxin basipetally transported in the stem seemed to be of less importance in determining cell number per primordium. Thus, established primordia depended upon this auxin to a lesser extent than primordia which were being initiated. These observations were explained on the basis of differential contributions during primordium development of cell division in the cambium of the stem and in the primordia themselves. As opposed to the effects of reduced auxin levels, applied gibberellic acid reduced the cell number per primordium most in established primordia. Initiating primordia were least affected by gibberellic acid treatment. Gibberellic acid treatment seemed mainly to reduce intraprimordium cell division, on which continued development of established primordia most depends. Seemingly, at least in brittle willow, applied gibberellic acid blocks the action of auxin in primordium development subsequent to the initiation phase.
منابع مشابه
An Ethylene-Mediated Increase in Sensitivity to Auxin Induces Adventitious Root Formation in Flooded Rumex palustris Sm.
The hormonal regulation of adventitious root formation induced by flooding of the root system was investigated in the wetland species Rumex palustris Sm. Adventitious root development at the base of the shoot is an important adaptation to flooded conditions and takes place soon after the onset of flooding. Decreases in either endogenous auxin or ethylene concentrations induced by application of...
متن کاملNitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process.
This report describes part of the signaling pathway and some of the molecules involved in the auxin-induced adventitious root formation in cucumber (Cucumis sativus). Previous results showed that nitric oxide (NO) mediates the auxin response during adventitious root formation (Pagnussat et al., 2002). To determine the order of action of indole acetic acid (IAA) and NO within the signal transduc...
متن کاملGenetic analysis of adventitious root formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana.
When cultured on media containing the plant growth regulator auxin, hypocotyl explants of Arabidopsis thaliana generate adventitious roots. As a first step to investigate the genetic basis of adventitious organogenesis in plants, we isolated nine temperature-sensitive mutants defective in various stages in the formation of adventitious roots: five root initiation defective (rid1 to rid5) mutant...
متن کاملMolecular cloning and expression analysis of the MTN gene during adventitious root development in IBA-induced tetraploid black locust.
5'-Methylthioadenosine (MTA) nucleosidase (MTN) plays a key role in the methionine (Met) recycling pathway of plants. Here, we report the isolation of the 1158 bp full-length, cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) MTN (TrbMTN), which contains an open reading frame of 810 bp that encodes a 269 amino acid protein. The amino acid sequence of TrbMTN has more than ...
متن کاملA novel plant-specific family gene, ROOT PRIMORDIUM DEFECTIVE 1, is required for the maintenance of active cell proliferation.
Hypocotyl segments of Arabidopsis (Arabidopsis thaliana) produce adventitious roots in response to exogenously supplied auxin. root primordium defective 1 (rpd1) is a temperature-sensitive mutant isolated on the basis of impairment in this phenomenon. This study describes further phenotypic analysis of the rpd1 mutant and isolation of the RPD1 gene. When adventitious root formation was induced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 49 6 شماره
صفحات -
تاریخ انتشار 1972